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1 Problem

In the book IC Interconnect Analysis[1], it is stated that the first 2k moments
may be preserved after net reduction. For example, Theorem 6.3 (subsection
6.4.1, page 199) demonstrates that the block Arnoldi method preserves the
first 2k moments for RLC circuits with a symmetric formulation. Additionally,
Theorem 6.4 (subsection 6.4.2, page 202) asserts that the block Lanczos method
preserves the first 2k block moments. Furthermore, subsection 6.8.1 (page 228)
indicates that PRIMA produces the same results for symmetric RC circuits
as the block Lanczos and block Arnoldi methods, and therefore, the first 2k
moments are preserved.

However, our implementation of PRIMA only preserves the first k moments,
even for symmetric RC circuits. The moments from the (k+ 1)-th to the 2k-th
are significantly different, exceeding the range of numerical calculation errors.
Why is this the case?

2 Counter Example

We have meticulously checked the code multiple times and are quite confident
that the implementation is correct. Consequently, we have revisited the theo-
retical properties to ascertain their accuracy. We employed a straightforward
circuit as a counterexample, enabling manual calculation of net reduction.

The case in point is a simple 4-stage RC circuit, as depicted in Figure 1. All
resistors and capacitors are of equal value 1 (r1 = r2 = r3 = r4 = 1, c1 = c2 =
c3 = c4 = 1).

Figure 1: 4-stage RC circuit
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For this circuit, the following applies:

GV + C
dV

dt
= b · Vin (1)

G =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1



C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



b =


1
0
0
0


which translates to:

V +A
dV

dt
= r · Vin (2)

A =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4



r =


1
1
1
1


This configuration clearly represents a symmetric RC circuit.

Focusing on the last node n4, we obtain:

Vout = lT · V (3)

l =


0
0
0
1


We calculate the moments of the original system with the transfer function:

H(s) =
Vout(s)

Vin(s)
(4)

= lT · (I + sA)−1 · r

The first four moments are [m0,m1,m2,m3] = [1, 10, 85, 707].
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We then reduce the 4-dimensional system to 1-dimensional using the block
Arnoldi method (a special case with N = 1 for each block). The results are
manually determined as:

V = [V0] =


0.5
0.5
0.5
0.5

 (5)

H = [7.5]

Upon computing the moments of the reduced systems, we find [m0,m1] =
[1, 7.5]. It is evident that m0 is preserved, but not m1.

Furthermore, we reduced the system to 2-dimensional, and the moments
calculated were [m0,m1,m2,m3] = [1, 10, 84.3571, 700.5510]. Once again, only
the first k moments are preserved, not 2k.

This discrepancy suggests that while the block Arnoldi method is supposed
to preserve the first 2k moments, in our implementations for reducing the system
dimensions, it only preserves the first k moments. This raises questions about
the specific conditions under which the theoretical guarantees of moment preser-
vation apply, or if there might be an overlooked aspect in our implementation
or the theoretical framework.

3 Proof Question

We have scrutinized the proof of Theorem 6.3 (there is no proof provided for
Theorem 6.4). The proof for Lemma 6.1 appears to be valid, and the results
from the reduction align with it. However, our findings conflict with equation
6.61 from the proof of Theorem 6.3. The equation in question is:

BTAi = BTVqH
i
qV

T
q (6)

Taking a special case where i = 0, we identify that the left term is lT =
[0, 0, 0, 1], but the right term becomes:

V · V T =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 (7)

lT · V · V T = [0.25, 0.25, 0.25, 0.25]

According to the proof, Equation 6.61 is supposed to follow from manipula-
tions based on Lemma 6.1. However, the connection between Lemma 6.1 and
Equation 6.61 remains unclear to us.

Reviewing the proof of Lemma 6.1 (on page 234), we question whether Equa-
tion 6.153 can be universally applied. While it is true that r = V V T r, the
assertion lT = lTV V T seems invalid, given r = [1, 1, 1, 1] and l = [0, 0, 0, 1]. As
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demonstrated in Equation 7, each row of V V T sums up to 1, but the vector l
only selects one element from these. If Equation 6.153 cannot be universally
applied, then the same logic may not extend to Equation 6.61 neither.

4 Conclusion

Based on our analysis, there might be an error in Theorem 6.3, and possibly
by extension, in Theorem 6.4 as well. The net reduction method appears to
preserve the first k moments, but it may not preserve the first 2k moments,
even in the case of symmetric RC circuits. This discrepancy necessitates a
further review of the underlying proofs and the conditions under which these
theorems are assumed to hold.

5 Matlab Code

Here are the Matlab codes we use.

5.1 Arnoldi

% Standard Arnoldi to reduce kr (A, b )
function [Qn,Hn,Q,H]= a rno l d i (A, r , order )
n = s ize (A, 1 ) ; order=min( order , n ) ;
Q = zeros (n , order +1); H = zeros ( order+1, order ) ;
Q( : , 1 ) = r /norm( r ) ;
for i =1: order

v=A∗Q( : , i ) ;
% for j =1: i
for j =1:max( i , 2 ) % opt imize to j =1:2 f o r symmetric case

H( j , i ) = Q( : , j ) ’∗ v ;
v = v − H( j , i )∗Q( : , j ) ;

end
H( i +1, i )=norm( v ) ;
Q( : , i+1)=v/H( i +1, i ) ;

end
Hn = H(1 : order , : ) ; Qn=Q( : , 1 : order ) ;

5.2 Circuit formulation

function [A, r ,G,C]= rc network (n)
r e s = ones (n , 1 ) ; caps = ones (n , 1 ) ; s r c s =(0:n−1) ’ ;
g = 1 ./ r e s ;
Ag = eye (n ) ; Ag(n+1:n+1:end)=−1;
G = Ag∗diag ( g )∗Ag ’ ;C=diag ( caps ) ;
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b = zeros (n , 1 ) ; b (1 ) = 1/ r e s ( 1 ) ; L=eye (n ) ;
A = G\C; r=G\b ;

5.3 Testing script

% try wi th 4 s e r i a l RC with a l l va lue=1
n = 4 ;
[A, r ]= rc network (n ) ;
% o r i g i n a l momements
L = eye (n ) ; l = L ( : , end ) ; % work on l a s t node
ms = zeros (n , 1 ) ;
for i =1:n

ms( i ) = l ’∗Aˆ( i −1)∗ r ;
end

% reduce to order=1/2
for q=1:2

[V,H]= a rno l d i (A, r , q ) ;
Ar = H; r r = V’∗ r ; l r = V’∗ l ;
% reduced system moments
msr = zeros (2∗q , 1 ) ;
for i =1:2∗q

msr ( i ) = l r ’∗Arˆ( i −1)∗ r r ;
end
% Fi r s t q match
a s s e r t (max(abs (msr ( 1 : q)−ms( 1 : q)))<1e−12);
% 2∗q doesn ’ t match
max(abs (msr (q+1:2∗q)−ms(q+1:2∗q ) ) )

% v e r i f y Aˆ i ∗ r = V∗Hˆ i ∗V’∗ r
for i =0:q−1

d i f f = Aˆ i ∗ r − V∗Hˆ i ∗V’∗ r ;
a s s e r t (max(abs ( d i f f ))<1e−12);

end
% v e r i f y l ’∗Aˆ i = l ’∗V∗Hˆ i ∗V’
for i =0:q−1

d i f f = l ’∗Aˆ i − l ’∗V∗Hˆ i ∗V’ ;
max(abs ( d i f f ) )

end
end
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